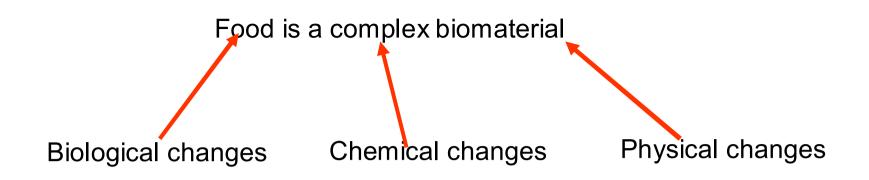
Technology and Sustainable Development

Sustainability assessment of Food And Beverage packaging

> Himanshu Mishra 04782 CPDM

Layout

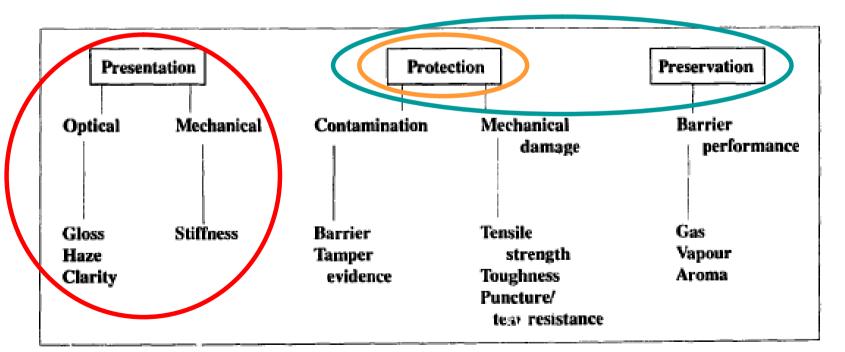


Introduction about packaging

What led to it ?

Societal change due to use of food packaging, and misuses

- Sustainability in this context
- Morphology
 - System Layout
- Simulation and results
- Conclusion



Food quality refers to the degree to which a food meets expectations including *sensory characteristics* (taste, odor, texture, and appearance), nutritional profile, convenience, storage shelf life, safety, and other attributes related to product acceptance

The challenge to retain food quality

Purpose of packaging

- Vital
- Essential
- Desirable

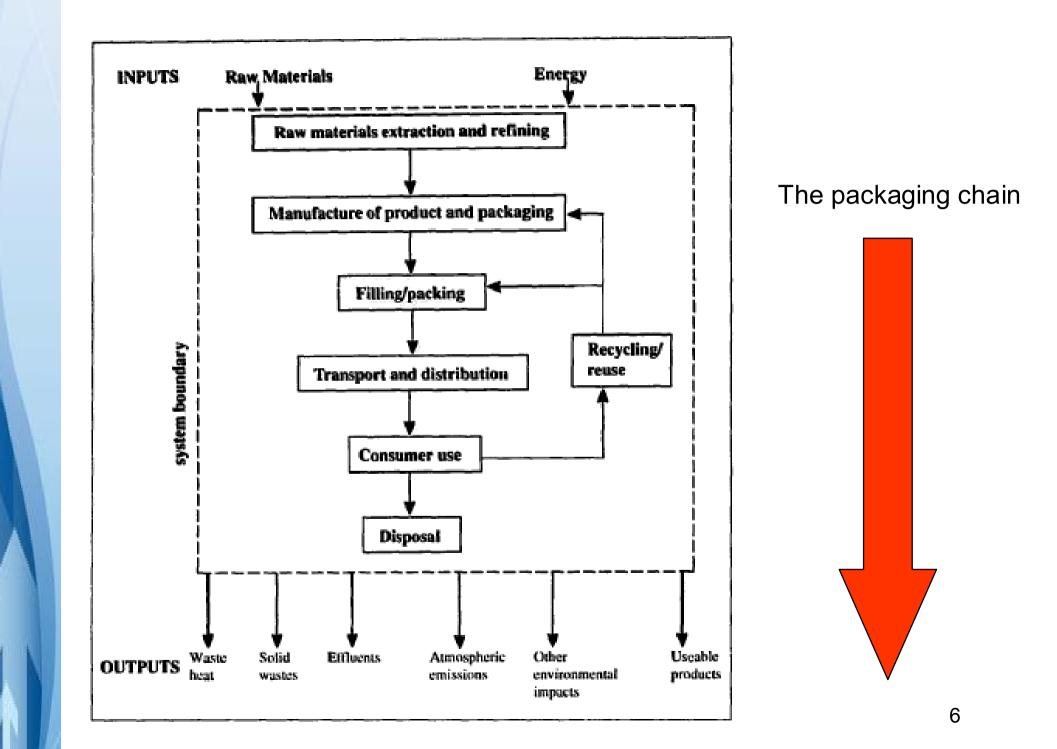


Fig. 1

The three 'P's of packaging: presentation, protection and preservation.

Factors for evolution to current state

- Health consciousness (nutrient and additive contents)
- Family size/singles (different portions)
- Economy (various sizes, quality levels)
- Mobility (convenience items)
- Labeling requirements (contents and directions)
- Available equipment (products for the freezer or microwave)
- Time and convenience to purchase and use
- Consumerism (consumer complaints have the highest influence on pharmaceutical and health-related products)
- Customs and social habits (beverage packaging)
- Environmental concerns (reduced, reusable, recyclable packaging and recovery as energy)

Packaging and production process

Water use – extensive

10% reduction in the use of water by the food industry across the UK would save 43 mega litres of water a day, or 1% of all industrial use.

Energy use - extensive

about 14% of energy consumption by UK businesses and 7 million tonnes of carbon emissions per year.

Degradation of biodiversity.

Contamination of soil and water

Children, pregnant women and the unborn are thought to be most susceptible to these negative health effects

A study of almost 2,000 wells across the country showed that 9 percent of domestic wells and 2 percent of public-supply wells had nitrate concentrations in excess of the EPA's maximum contaminant level.

Nitrate poisoning can cause dangerously low blood-oxygen levels in babies (or blue-baby syndrome), spontaneous abortions, and possibly cancer

Table 1. Summary of energy usage for paper production process

Table 2	anive1	ant Carbo	n omissions	bacadien	energy source a	and amount		Raw materials preparation				
Raw	equivar	ent Carbo		s based on	energy source a	Carbon		debarking	8.5	kWh/t	elec	
materials preparation					PJ	emissions coeff ktC	tC	conveyor	30.3	kWh/t	elec	
debarking	8.5	kWh	elec		2.36E-09	1.15E-07	1.15E-04		00.0		0.00	
conveyor	30.3	kWh	elec		8.42E-09	4.08E-07	4.08E-04	Pulping				
Pulping								mechanical	1650	kWh/t	elec	
<u> </u>					assume chemical			moondinedi			0.00	
mechanical	1650	kWh	elec		pulping only			chemical	4.4	GJ/t	steam	
		GJ/t							406	kWh/t	Elec	
chemical	4.4	steam			0.0000044	0	0	recovery				GJ/t reusable
	406	elec			1.13E-07	5.47E-06	5.47E-03	boiler	1.1	GJ/t	-10	heat
				GJ/t					50		47	GJ/t reusable
recovery boiler	1.1	GJ/t	10	reusable heat	0.0000011	5.34E-05	5.34E-02		58	Elec	-17	heat
DOILEI	1.1	GJ/L	-10	GJ/t	0.000011	J.34E-0J	J.34E-02	lime kiln	2.3	GJ/t	oil/gas	
	58	elec	17	reusable heat	1.61E-08	7.81E-07	7.81E-04		15	kWh/t	Elec	
	- 50	000	-17	neat	1.012-00	1.012-01	7.012-04					
lime kiln	2.3	GJ/t	oil/gas		0.0000023	0.00004692	0.04692	bleaching	4.3	GJ/t	steam	
	15	kWh/t	elec		4.17E-09	2.02E-07	2.02E-04		159	kWh/t	elec	
bleaching	4.3	GJ/t	steam		0.0000043	0	0					
•	159	kWh/t	elec		4.42E-08	2.14E-06	2.14E-03	Papermaking				
Papermaking								stock prep	274	kwh/t	elec	
stock prep	274	kwh/t	elec		7.61E-08	3.69E-06	3.69E-03		0.7	GJ/t	steam	
	0.7	GJ/t	steam		0.0000007	0	0					
press	238	kwh/t	elec		6.61E-08	3.21E-06	3.21E-03	Pressing	238	kwh/t	elec	
								drying	10	GJ/t	steam	
									21	kwh/t	elec	

Effects of dioxines

- Dioxin is almost insoluble in water.
- Instead, it has a high affinity for lipids.
- Dioxin tends to stick to organic matter, such as ash, leaves, and soil.
- Since dioxin binds strongly to soil, it does not easily contaminate the water supply.
- When dioxin is in water, it sticks to organic matter or even plankton.

Source

- Waste incineration
- Leaching from packaging material
- Paper bleaching

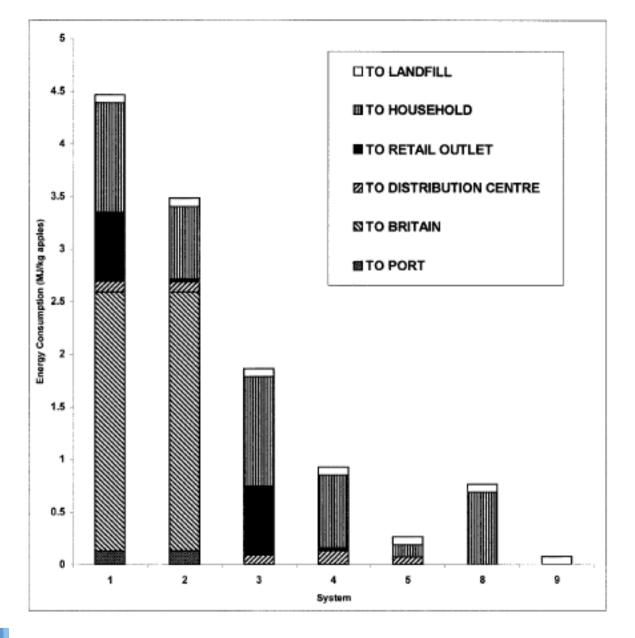
Effects -

- Cancerous
- Non cancerous
- Indicated by serum levels in body
- concept of toxic equivalency factors (TEFs) has been developed and introduced to facilitate risk assessment and regulatory control of exposure to these mixtures.
- toxic equivalents concentration (TEQs) contributed by all dioxin-like congeners in the mixture using the following equation which assumes dose additivity:

 $\text{TEQ} = \sum (\text{PCDD}_i \times \text{TEF}_i) + \sum (\text{PCDF}_i \times \text{TEF}_i) + \sum (\text{PCB}_i \times \text{TEF}_i) + \dots$

Supply chain

Outreach

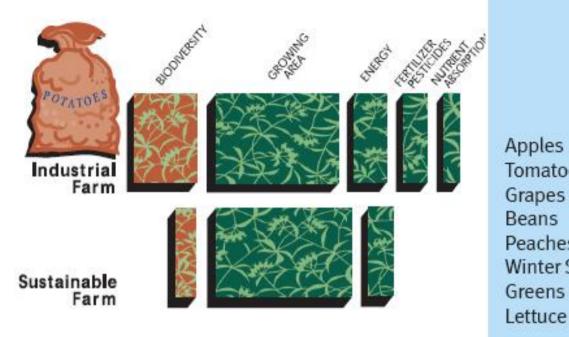

- Variety of food available throughout the globe
- The 2006 E coli outbreak is a good example of this, as contaminated spinach from a single region in California managed to sicken people in 26 states.

Monetary Benefits

• Multiple links increase the cost to end user and reduce the share of initial point

Distance travelled

- In England, where over 80% of food is now purchased in Supermarkets, the contents of a typical supermarket trolley of food has traveled more than 3,000 kilometers before it reaches the display shelves. This contributes greatly to planetary pollution and depleted food quality.
 - In 2001, food typically traveled 1,500 3,000 miles from farm to plate, an increase of up to 25% since 1980


KEY

System

Description of supply chain

- 1 Imported from the USA, marketed at a supermarket, shopping trip of 3 km in a medium sized car
- 2 Imported from the USA, marketed at a street market, shopping trip of 2 km in a medium sized car
- 3 UK sourced, marketed at a supermarket, shopping trip of 3 km in a medium sized car
- 4 UK sourced, marketed at a street market, shopping trip of 2 km in a medium sized car
- 5 Sourced locally, home delivery
- 8 Sourced locally, picked up in a journey of 2 km in a medium sized car
- 9 Homegrown

Figure 4. Average transport energy consumption for apple distribution to Brixton. Based upon Jones (2002).

Footprint

	Eating from a supermarket in Chicago (via a major	Eating locally in San Francisco (bought at the
	distribution terminal)	farmers market)
oples	1,555 miles	105 miles
matoes	1,369 miles	117 miles
apes	2,143 miles	151 miles
eans	766 miles	101 miles
aches	1,674 miles	184 miles
inter Squasł	n 781 miles	98 miles
eens	889 miles	99 miles
ttuce	2,055 miles	102 miles

Data from a San Francisco farmers market that calculated the average number of food miles traveled by its produce and compared those distances with produce in a Chicago terminal market, where brokers and wholesalers buy produce that has typically traveled long distances to sell to grocery stores and restaurants.³²

Consumption practices

- More variety introduced in diet.
- If used properly, a much more balanced diet being offered.
- Diet is a factor in the development of cardiovascular diseases
- Research shows for example, that reducing current average levels of salt, fat and sugar in diets in the UK can make a big impact on the estimated cost to the economy of food related ill health of £2.5 billion.
 - Leads to lesser wastage of food

Disposal

ACCELERATED PAPER

BIODEGRADABILITY OF SOME FOOD PACKAGING MATERIALS IN SOIL

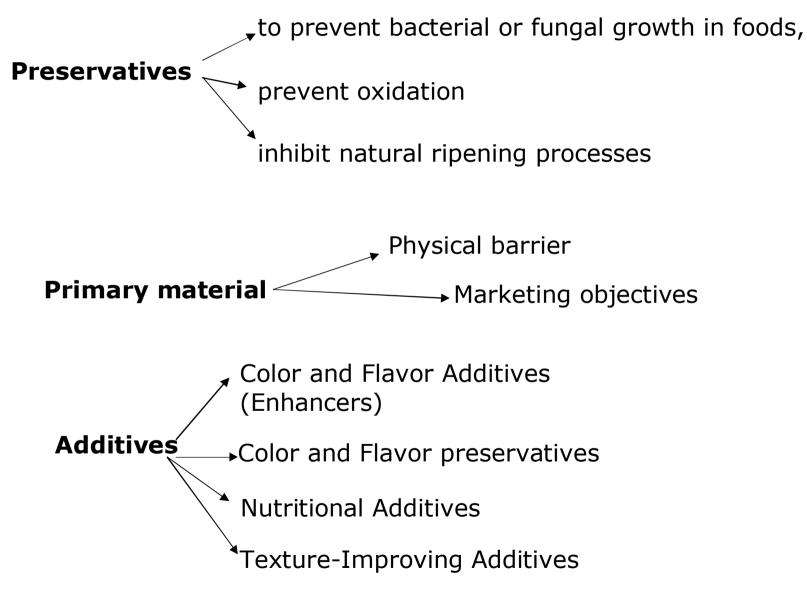
ASHA YABANNAVAR and RICHARD BARTHA*

Department of Biochemistry and Microbiology, NJAES Rutgers University, New Brunswick, NJ 08903-0231, U.S.A.

Table 1. Codes, descriptions and compositions of test materials and the summary of degradative changes they underwent during 3 months of aerobic exposure in soil*

Code	Same description	Sample composition (%)	Sample carbon (mg)	Conversion to CO ₂ (%)	Weight loss (%)	Loss of clongation (%)
PO	Packaging film [†]	Irradiated polyolefin, 100	211.2	1.5	NA	-33.0
PP-1	Packaging film [†]	PP, 100	215.0	ND	ND	ND
PP-2	Packaging film [†]	PP, 100	214.5	ND	ND	ND
PE	Packaging film [†]	PE, 100	214.7	ND	ND	ND
PVC-1	Produce/mushroom film‡	PVC, 69.5; DOA 23.6; ESO, 6.9	120.5	27.3	26.8	94.5
PVC-2	Bakery film [‡]	PVC, 76.5; DOA, 16.0; ESO, 7.5	116.5	19.4	23.2	-92.6
PVC-3	Meat-poultry film [‡]	PVC, 70.0; DOA, 19.2; ESO, 10.8	122.7	25.4	38.4	94.0
PVC-4	Meat-poultry film [‡]	PVC, 72.0; DOA, 22.0; ESO, 6.0	121.4	25.7	27.2	-94.0
PVC-5	Meat-poultry film [‡]	PVC, 70.0; DOA, 13.6; ESO, 16.0	123.4	18.8	18.4	92.0
PVC-6	Shrink film [‡]	PVC, 84.0; DOA, 2.0; ESO, 14.0	108.3	7.3	14.8	- 67.0
PVC-7	Shrink film‡	PVC, 70.5; DOA, 8.6; ESO, 16.0	109.9	5.9	9.6	ND
PVC-8	DOP-plasticized film	PVC, 68.5; DOP, 24.8; ESO, 7.0	123.1	9.7	20.8	-15.0
WP	Wax papert	Fiber, 75; wax, 25	126.0	78.6	NA	NA
BW	Bread wrap†	Fiber and filler, 68.0; wax, 32.0	126.2	76.2	NA	NA
FC	Food carton [†]	Cardboard, 96.0; PE, 4.0	104.7	81.9	NA	NA
OC	Frozen juice container [†]	Cardboard, 95; PE, 5.0	110.2	64.2	NA	NA

*All samples were applied at 250 mg in 25 g soil. Abbreviations: NA: not analyzed; ND: not detectable; PO: polyolefin; PP: polypropylene; PE: polyethylene; PVC: polyvinyl chloride; DOA: dioctyl adipate; DOP: dioctyl phthalate.


†Manufacturer not known to us.

and the Bardian B. Safer A. Ladar a Stra TTR

Alarming !!

- Packaging represents roughly one-third of municipal waste in the United States.
- 150 billion beverage containers are sold annually in the U.S.
- People in the US throw away 2.5 million plastic bottles every hour and less than 3% are recycled
- In the last decade, Americans wasted 7.1 million tons of cans: enough to manufacture 316,000 Boeing 737 airplanes.
- Had the 50.7 billion cans wasted in 2001been recycled, they could have saved the energy equivalent of 16 million barrels of crude oil--enough energy to generate electricity for 2.7 million U.S. homes for a year.

Morphology

Internal Layers

Morphology – primary material

Packaging Material	Advantages	Disadvantages
PAPER AND BOARD	Low cost for a given level of rigidity, and their excellent printability and promotional potential Good environmental image	No barrier to gasses and lose their strength and rigidity when wet Have to be coated and/or laminated with impermeable materials
GLASS	Made from silica	Colour variation and contamination with ceramic particles can cause difficulties during recycling Weight and fragility, and its vulnerability to abrupt temperature fluctuations Requires high initial energy inputs.
STEEL	Readily and cheaply separated	Heavy material with low intrinsic value `
ALUMINIUM	Ideal material for recycling High intrinsic worth, and hence scrap value Recycling does not degrade aluminium Creation of practically closed loop system	Limited
PLASTICS	Economic to recycle Well-developed markets for the products of its recycling such as carpet fibres and fibrefil	Converting it back to its original components by chemical means using hydrolysis or methanolysis

	Morphology – additives						
	Туре	Classification	Example / Explaination				
	Color and Flavor Additives (Enhancers)		extract of the annatto seed, which gives cheese and butter a yellowish color The most commonly used flavor additives are sugars (including dextrose and corn syrups), salt, and spices				
	Color and Flavor preservatives	Antioxidants Chelating agents. Fat Substitutes Antimicrobials	Low calories ! Mold inhibitors, such as sodium and calcium propionate, are commonly used in breads and cakes				
	Nutritional Additives	Fortified foods contain added vitamins and minerals that are not naturally present in the food or that are found only in low levels.					
	Texture- Improving Additives	Anticaking agents. Emulsifiers Thickeners Meat tenderizers	Two common anticaking agents are silicates (used in table salt) and cornstarch (added to sugar). prevent the separation of the oil and water portions of a food product and help maintain a uniform consistency Certain gums also have humectant properties when used in candies.				
A Dame		Dough conditioners					

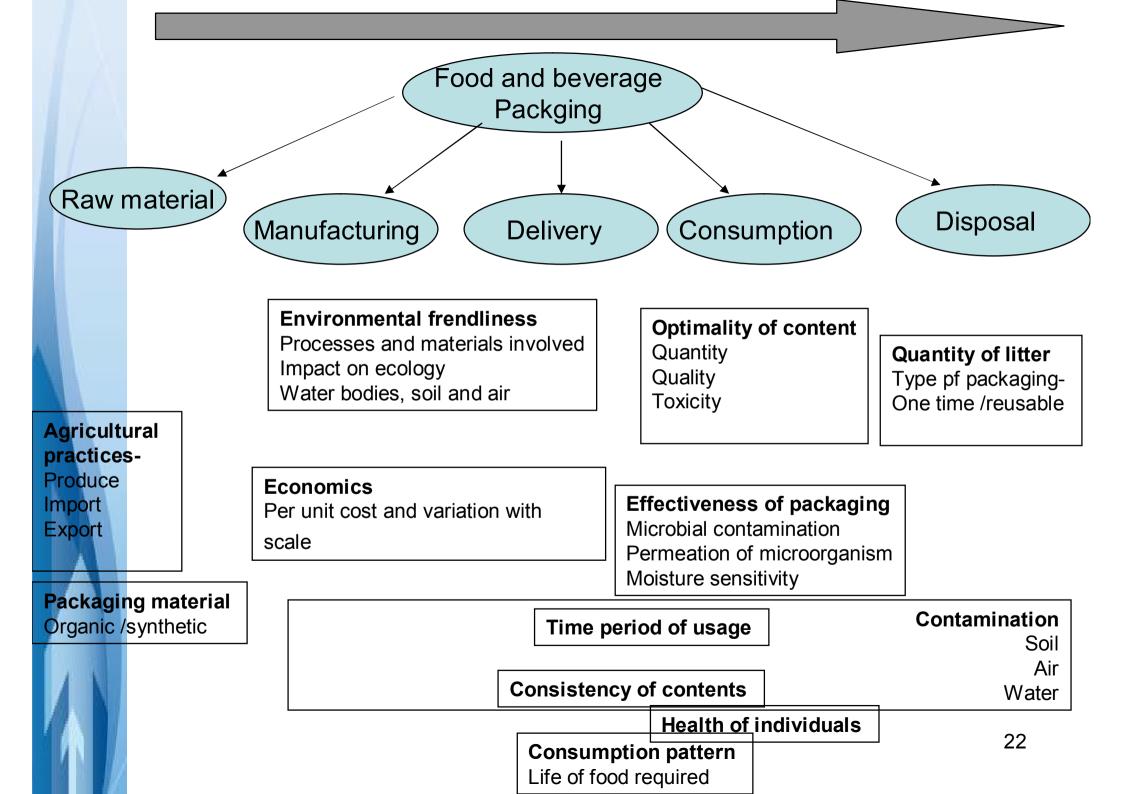
Health effects of additives

Saccharin

- Discovered in 1879 at Johns Hopkins University, it is a petroleum-based product that has no calories and is 300 times sweeter than sugar.
- In 1977, FDA proposed banning saccharin

Nitrites in meat

- The function of nitrite is threefold: it provides the desirable pink color in these products, adds flavor, and inhibits the bacterium that causes botulism.
- converted in the stomach into nitrites. Nitrites, in turn, react with chemicals called amines to form nitrosamines, which are carcinogens associated with liver cancer in some animals.


Health effects of additives

Plastic	Common Uses	Adverse Health Effects
Polyvinyl chloride (#3PVC)	Food packaging, plastic wrap, containers for toiletries, cosmetics, crib bumpers, floor tiles, pacifiers, shower curtains, toys, water pipes, garden hoses, auto upholstery, inflatable swimming pools	Can cause cancer, birth defects, genetic changes, chronic bronchitis, ulcers, skin diseases, deafness, vision failure, indigestion, and liver dysfunction
Phthalates (DEHP, DINP, and others)	Softened vinyl products manufactured with phthalates include vinyl clothing, emulsion paint, footwear, printing inks, non-mouthing toys and children's products, product packaging and food wrap, vinyl flooring, blood bags and tubing, IV containers and components, surgical gloves, breathing tubes, general purpose labware, inhalation masks, many other medical devices	Endocrine disruption, linked to asthma, developmental and reporoductive effects. Medical waste with PVC and pthalates is regularly incinerated causing public health effects from the relese of dioxins and mercury, including cancer, birth defects, hormonal changes, declining sperm counts, infertility, endometriosis, and immune system impairment.
Polycarbonate, with Bisphenol A (#7)	Water bottles	Scientists have linked very low doses of bisphenol A exposure to cancers, impaired immune function, early onset of puberty, obesity, diabetes, and hyperactivity, among other problems (Environment California)
Polystyrene	Many food containers for meats, fish, cheeses, yogurt, foam and clear clamshell containers, foam and rigid	Can irritate eyes, nose and throat and can cause dizziness and unconsciousness. Migrates into food and stores in body fat.

20

Morphology

Valuma of storage					
Volume of storage	Individual consumption	Family consumption			
Dimension	variable				
Usage information	printed on packaging	inside			
Branding and marketing Information disseminatio		inside			
Brand communication	Shape	Colour	Print		
Dispensing mechanism	Can - open lid n	Hole for straw	Cap	tear	
Sealing mechanism	One time	Multiple use			
Sealing	Seperable and inseperable				
Dispensing	One time	Multiple use			
Mode of display	Flexible	Stiff	Self standing	Lying down	
Grouping	Sachets	independent			
Sealing method	Individual	In group			
Internal coating for contamination prevention					
Vaterial	Glass	Plastic	Paper	Aluminium	Steel
Type of paints and chemicals used	petroleum based	Non petroleum based			
Type of print					
Carrying	Shape	Handle			
Protection from duplicacy	physical	non physical			
eakage proofing(esp incase of beverage)	material	coating			
veight	variable				
Waterproofing	coating	material			
naterial seperation possible /not	Yes	No			
Additives					
Color and Flavor Additives	Yes	No			1
Color and Flavor preservatives	Yes	No		(Pro)	
Nutritional Additives	Yes	No		luys	
Texture-Improving Additives	Yes	No			
Fransport packaging	shape	size		Naturel	
condition control	External required	Internal			
No of layers between food and environment	single	mulitple		and the second and	
Storage medium	Permanent	Temporary			
5 • • • •		In consumption	Storage		
Biodegradable	Yes	No			
Recyclability	Yes	No			21
					<u> </u>

Sustainability -context

Sustainable packaging:

- Is beneficial, safe and healthy for individuals and communities throughout its life cycle;
- Meets market criteria for performance and cost;
- Is sourced, manufactured, transported and recycled using renewable energy;
- Maximizes the use of renewable or recycled source materials;
- Is manufactured using clean production technologies and best practices;
- Is made from materials healthy in all probable end-of-life scenarios;
- Is physically designed to optimize materials and energy; and
- Is effectively recovered and utilized in biological and/or industrial cradle-to-cradle cycles

Sustainable Packaging Coalition (http://www.sustainablepackaging.org/).

More holistic

carrying capacity of •community's natural resources •ecosystem services •aesthetic qualities •community's human capital

Should_not be drastically affected

23

	Consumers	Health state	Society
		number of working women	
		Income	
	practices	ratio pf packaged to normal food consumed per capita	
		MSW generated per capita	
		wastage of food	
	(Variety of food stuff consumed	
		percentage of waste as litter	
	Food	nutritional Value of food	
		freshness of food	
		Quanitity of packaged food	
		Shelf life	
A		Hygiene of food (preventing contamination)	
		distance travelled between point of produce and consumption	
		distance travelled between point of produce and consumption	
	Employees	Processing industry	Health hazards
		Transportation industry	dioxine exposure
		Production of food	
		Preservation	Quanitity of preservatives used
	people around the industry		
		Health state	
		food consumed by them because of ecological conditions around the industry	
		Prosperity and standard of living	
		r tospenty and standard of living	
	animals surrounding disposal area	Health state	
	animals surrounding disposal area		
	Deckering inductor	toxic contents inside body	
	Packaging industry	notrolours and usto concurred non-unit	Pacouroac
		petroleum products consumed per unit	Resources
		energy consumed	
			24

TEQ

bioderadability of packaging material (life of packaging material)

percentage of waste recycled

Soil contamination

Use of paints

Co2 emissions per unit packaging material+entire supply chain

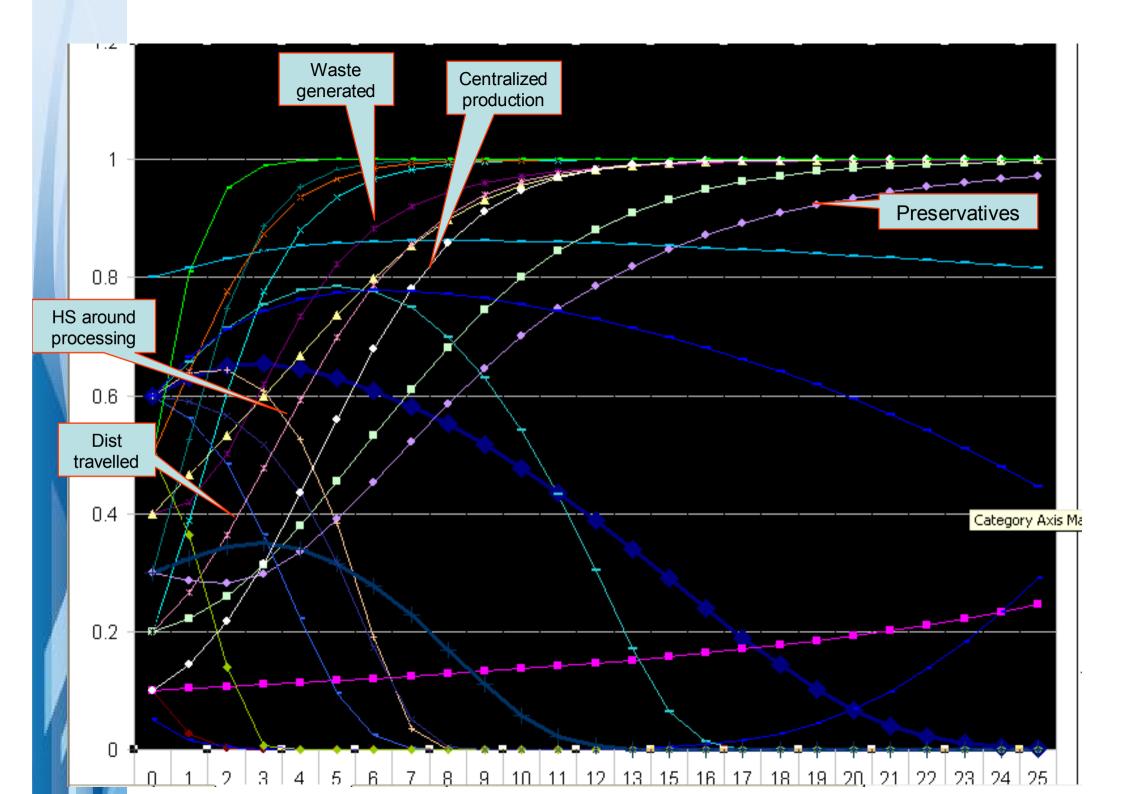
dioxines released into air

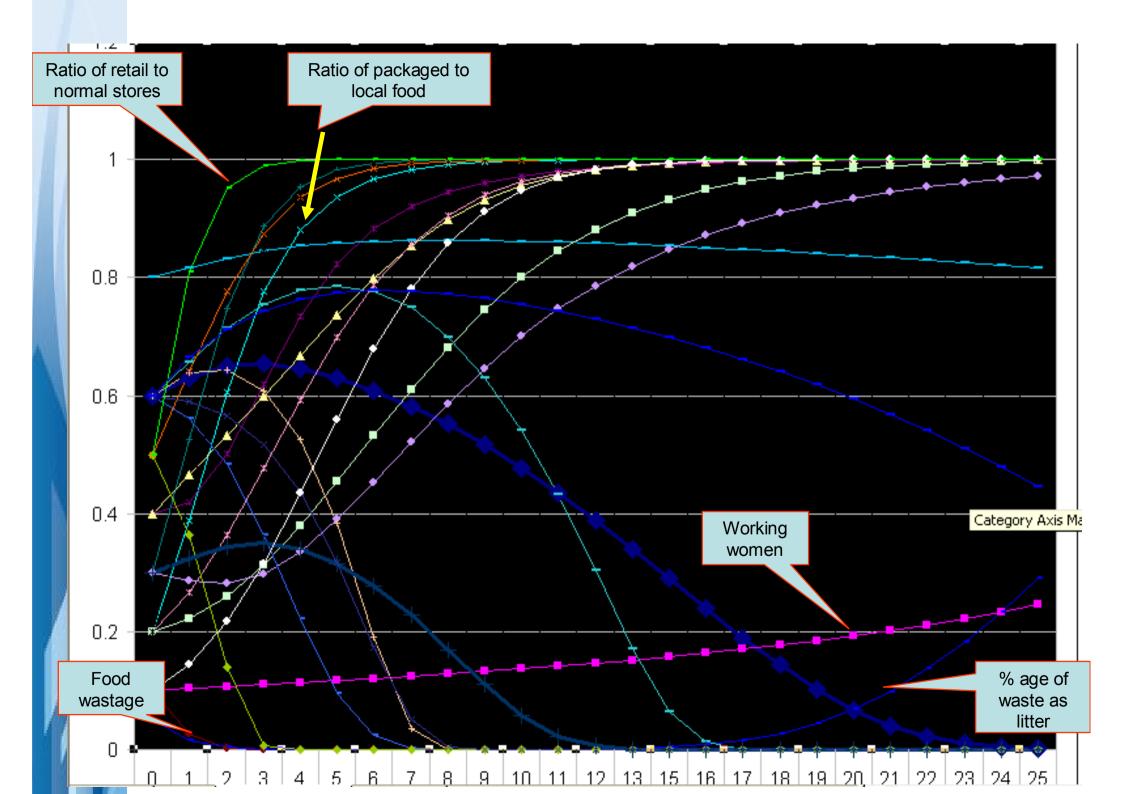
discharge of toxic chemicals to water

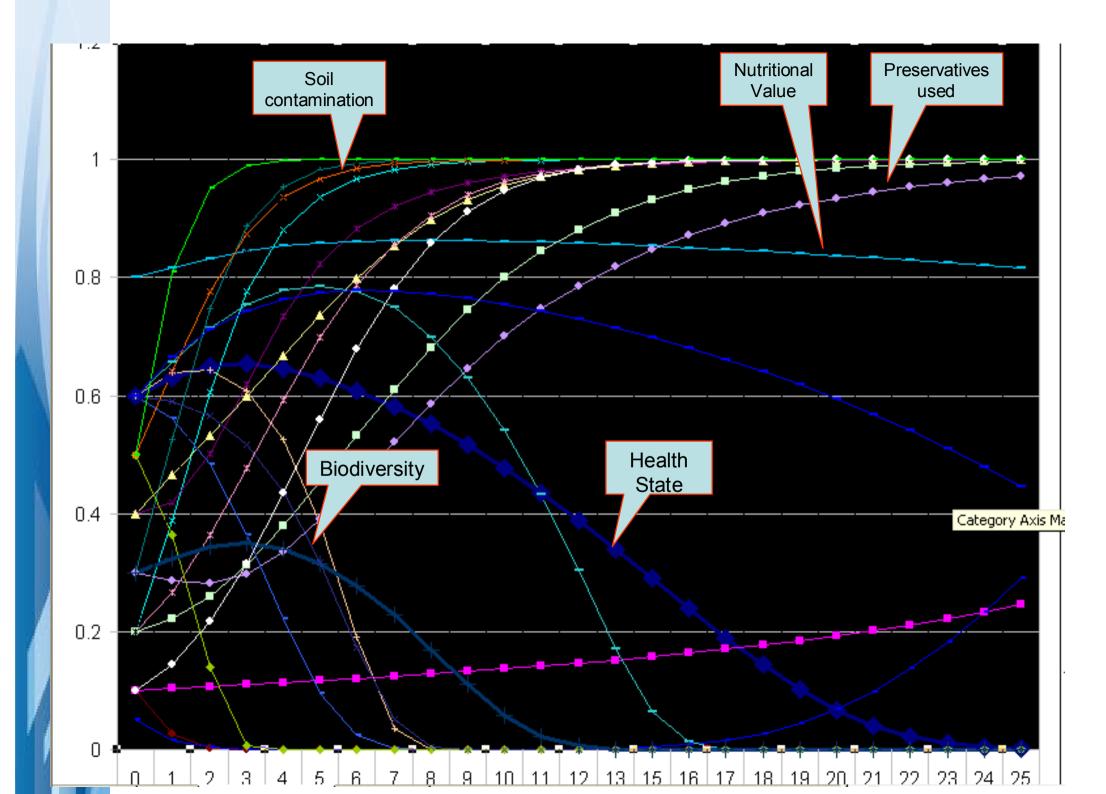
Biodieversity

geographic outreach of produced food

Centralized production


Marketing impetus


Ratio of retail outlets to local sellers


Response to Emergency

Environment

Distribution

Recommendations & Conclusion

- The current consumption pattern which goes beyond serving the needs and is focusing on wishes is unsustainable.
- Market forces have to be controlled.
- Interventions
 Products that change the way we consume, buy, dispose.
 Reduce unnecessary activities, to as much extent as possible.
- Stimuli
 Why take the longer route home grown or locally grown
 Consumption practices need change
 Think before you eat !
 Vicious circle

OPTIMUM LEVEL can be decided only by the consumer

Think better ,eat healthy